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Abstract – Evolvable Hardware (EHW) applications have, 
so far, encompassed the synthesis of standard analog and 
digital circuits’ building blocks through Genetic Algorithms 
(GAs). Currently, the research effort in EHW is being 
driven towards twofold purposes: the synthesis of circuits of 
medium to high complexity; and the design of 
reconfigurable architectures that facilitate the system 
evolvability and on-chip implementation of the evolved 
circuits. This work addresses these issues by describing the 
evolution of Digital to Analog Converters (DACs). We 
investigate the efficiency of the evolutionary system when 
using different representations and when evolving current 
and voltage mode circuits. A new techinique based on 
hierarchical evolution is devised to enhance the 
evolutionary speed and the design scalability. New methods 
to increase the competitiveness of the evolved designs are 
also discussed. 
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1. INTRODUCTION 

 
This work describes a set of experiments involving the 
evolution of electronic circuits, particularly Digital to 
Analog converters. Several important issues for EHW are 
addressed by the experiments here presented, such as the 
evolution on reconfigurable architectures models, different 
modes of circuit operation, and the scalability of the results. 
 

DACs have a widespread use in the area of digital audio, 
where the digital information stored in the CD is converted 
into music via high-precision converters. The synthesis of 
DACs includes several requirements, such as speed, 
linearity of the transfer curve, accuracy and resolution [1]. 
Most of the DACs presented in the literature are decoder 
based, in which a string of resistors is used to generate 2N 
reference signals, where N is the number of digital inputs 
[2]. The digital input word is then used to select the 
appropriate reference signal. The evolutionary approach for 
circuit synthesis, on the other hand, usually explores 
alternate ways to synthesize circuits that are rather different 
from human designed ones.  
 
The Field Programmable Transistor Array  (FPTA) [3] is 
used as a reconfigurable hardware model for some of the 
evolutionary experiments. We contrast the results of 
evolution when using the FPTA model and another 
representation  method  previously presented in the 
literature [4]. 
 
This paper is divided into the following contents: section 2 
provides a brief overview of Evolvable Hardware. Section 3 
describes the Genetic Algorithm (GA) modeling for the 
DAC evolution. Section 4 depicts the experiments 
performed, where we compare the performance of the 
evolutionary system when using different circuit 
representations, and also for voltage and current mode 
circuits. Finally, section 5 concludes the work. 
 

2. OVERVIEW OF EVOLVABLE HARDWARE 

 
The conceptual birth of evolvable hardware was partially 
inspired by search/optimization/adaptation mechanisms and 
partially by the availability of reconfigurable devices such 
as Field Programmable Gate Arrays (FPGAs) [5]. Circuits 
can be evolved via reconfiguring programmable devices 
(which is called intrinsic EHW) or via evolving software 
models – descriptions of the electronic HW (referred to as 
extrinsic EHW) [6].  
 



Figure 1 illustrates the main steps of evolutionary design for 
electronic circuits.  
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Figure 1- Evolutionary synthesis of electronic circuits   
 
Each candidate circuit design is associated with a "genetic 
code" or chromosome. The simplest representation of a 
chromosome is a binary string, a succession of 0s and 1s 
that encode a circuit. The first step of evolutionary synthesis 
is to generate a random population of chromosomes. In the 
case of extrinsic evolution, the chromosomes are then 
converted into a model that gets simulated (e.g. by a circuit 
simulator such as SPICE) and produces responses that are 
compared against specifications. In intrinsic evolution the 
chromosomes are converted into control bitstrings, which 
are downloaded to program the reconfigurable device. The 
configuration bitstring determines the functionality of the 
cells of the programmable device and the interconnection 
pattern between cells. Circuit responses are compared 
against specifications of a target response and individuals 
are ranked based on how close they come to satisfying it. 
 
Many different trends can be currently identified in EHW 
research: evolution of analog circuits [7], exploration of 
device physics [8], fault tolerance experiments [9], 
evolution of digital circuits [10], industrial applications 
[11], and research on reconfigurable analog devices [12]. 
 

3. PROBLEM MODELING 
 

The evolution of DACs has been reported before in [13]. In 
this work, a 3 input bits DAC has been evolved using the 
Genetic Programming (GP) evolutionary technique [7]. GP 
allows a very flexible representation, in the sense that 
circuits of different sizes and shapes can be sampled by 
evolution. Particularly, Bennett et Al [13] used bipolar 
transistors, resistors and capacitors as  the   components to be 
manipulated by evolution. However, they needed to evaluate 
around 45,000,000 individuals (population of 330,000 
individuals sampled along 139 generations) to achieve the 
solution. Another limitation of this experiment is the fact 
that the solution can not be implemented in hardware, 
because no integrated circuit model was employed to 
generate the software simulation models. 
 
The problem modeling refers to the circuit representation 
and to the fitness evaluation function. This paper compares 

two different representations, the first one allowing an 
arbitrary pattern of interconnections among the components, 
which we call gene based representation, and the second 
one based on an existing reconfigurable chip. 
 
The gene based representation establishes a straightforward 
mapping between the electronic circuit topology and the 
integer strings processed by the GA [4]. Each functional 
block of the string, also called gene, states the nature, value, 
and connecting points of a correspondent electronic 
component, which may include resistors, capacitors, bipolar 
transistors and MOS  (Metal-Oxide-Semiconductor) 
transistors.  
 
Figure 2 depicts an example of this kind of chromosome-
circuit mapping for a common emitter amplifier. The 
chromosomes are made up of genes, each of which encodes 
a particular component. In the example of Figure 2, the 
chromosome will consist of three genes. The gene 
determines the nature, value and connecting points of the 
related component.  The total number of connecting points 
is a parameter to be set in this representation. This 
parameter is critical to the efficiency of the representation: if 
too few connecting points are considered, the number of 
possible topologies sampled by the evolutionary algorithm 
will be limited; conversely, if too many connecting points 
are considered, a higher number of non-simulatable 
topologies (with floating components) will arise. 
Additionally, each connecting point may be classified as 
internal or external.  While the former does not serve for 
any special purpose, the latter is connected to one of the 
following signals: power supply, ground, input signal or 
probed output (Figure 2). 

 
The advantage of this representation is its flexibility to map 
circuits with arbitrary types of interconnections. However, 
there is no integrated circuit model that support the 
hardware implementation of the evolved solutions. 
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Figure 2– Analog Circuit Representation. 



 
The second representation utilizes a model for the 
simulation of a reconfigurable transistor array, the Field 
Programmable Transistor Array (FPTA). The FPTA is a 
concept design for hardware reconfigurable at transistor 
level. As both analog and digital CMOS circuits ultimately 
rely on functions implemented with transistors, the FPTA 
appears as a versatile platform for the synthesis of both 
analog and digital (and mixed-signal) circuits. The 
architecture is cellular, and has similarities with other 
cellular architectures as encountered in FPGAs (e.g. Xilinx 
X6200 family) or cellular neural networks. One key 
distinguishing characteristic relates to the definition of the 
elementary cell. The architecture is largely a “sea of 
transistors” with interconnections implemented by other 
transistors acting as signal passing devices (gray-level 
switches) and integrated on a chip using 0.5-micron CMOS 
technology. Figure 3 illustrates an FPTA cell consisting of 8 
transistors and 24 programmable switches. 

 
The status of the switches (ON or OFF) determines a circuit 
topology and consequently a specific response. Thus, the 
topology can be considered as a function of switch states, 
and can be represented by a binary sequence, such as 
“1011…”, where by convention one can assign 1 to a switch 
turned ON and 0 to a switch turned OFF. Programming the 
switches ON and OFF defines a circuit for which the effects 
of non-zero, finite impedance of the switches can be 
neglected in the first approximation.  
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Figure 3 - Module of the Field Programmable Transistor 
Array. 

 
The advantage of this second representation is the 
possibility of implementing in hardware the evolved 
solutions. However, the amount of different topologies 
potentially sampled by the GA is limited by the number of 
switches. 
 
The fitness evaluation function determines how good each 
individual is considering a target to be achieved. In the case 
of DACs, each circuit is evaluated using a SPICE transient 
analysis. All the possible configurations of the input bits are 
given as fitness cases to the circuit, following an up-counter 

sequence. Figure 4 illustrates a typical response of a DAC 
circuit. 
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 Figure 4  – Response of a Digital to Analog Converter. 
 
The response in Figure 4 shows some of the non-idealities 
of DACs. The first one is the glitch problem, observed in 
the transition 001 to 010. It is a transient behavior in the 
output before it achieves the correct state. The second 
limitation is the settling time . It can be seen in the graph of 
Figure 4 that there is a time delay associated to the state 
transitions. The settling time must be kept in a value much 
lower than the signal frequency in order to be able to 
reconstruct the waveform [14].  
 
Typically, the fitness evaluation function is measured by the 
weighted sum of the deviations between the desired and the 
actual responses: 
 

Fitness = ?  wi |Oi – Ti| (1) 
 
where Oi is the output sample at instant i, Ti is the associated 
target, and wi is a weight.  In this application, the weight 
was set to one if the absolute of the error was less than 0.5V, 
and 10 otherwise. This is the means whereby higher errors 
can be heavily penalized [13].  
 

4. EXPERIMENTS 
 

In this section three experiments are described. The first 
experiment employs the gene based representation for the 
evolution of a DAC operating in the voltage mode. The 
second experiment uses the FPTA model for the circuit 
representation, and operation in current mode. In the third 
experiment, the concept of hierarchical evolution is applied 
to the synthesis of a 4 bit DAC. 
 

4.1 – First Experiment 
 
In a first experiment, we have used the gene based 
representation to evolve a 3-bit DAC in voltage mode. Each 
chromosome was made up of ten genes, which could encode 
only for PMOS and NMOS transistors. In addition to 
determining the topological connections of the components 
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as illustrated in the previous sections, this representation 
also allowed another degree of flexibility, to determine the 
width (W) and length (L) of each transistor. Therefore, 
besides evolving the DAC topology, the GA performed a 
parametric optimization as well. 
 
The parameters for the GA in the experiment were: 40 
individuals, 100 generations, a crossover rate of 30% and 
mutation rate of 8%. 
 
Two outputs of the circuit were considered for evaluation: 
the first one should provide the voltage variation resulting 
from the two least significant bits (LSB), and the second 
output must provide the voltage variation resulting from the 
most significant bit (MSB). These two outputs must be 
added to give the correct output for the 3-bit DAC. Figure 5 
illustrates this concept. In this figure, d0, d1 and d2 
represent the digital inputs, and Out1 and Out2 represent the 
circuit outputs. This is a divide-and-conquer approach 
devised to improve the performance of the evolutionary 
system. 

 
A critical problem in the performance evaluation refers to 
the timescale in which the input bits change. If the timescale 
is  small (milliseconds or less), than we may evolve a 
transient circuit, in which the transient response is correct, 
but that achieves an erroneous permanent state. This 
problem is depicted in Figure 6, which shows the results of 
a DAC circuit evolved in a preliminary experiment. This 
particular circuit was evaluated using a timescale of 
milliseconds, but we can observe the change in behavior 
when we increase the timescale: the final state reached for 
the inputs 100 and 101, which appeared to be right in the 
first simulation (graph A, spanning 20ms), is wrong in 
reality (graph B, spanning 20 seconds). In order to 
overcome this problem, in this new evolutionary experiment 
each circuit was evaluated twice, using timescales of 
milliseconds and seconds. 
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Figure 6 – 3-bit DAC evolution using a timescale of milliseconds (A) and the erroneous behavior of the circuit when tested 
in a timescale of seconds (B). 
 
 
Figure 7 depicts the schematic of the evolved circuit using 
the new evaluation approach, and Figure 8 shows the 
responses: the curves of the two outputs are shown in the 
first graph, and the combined output is shown in the 
second graph. In the circuit of Figure 7, the substrate of 

NMOS transistors are connected to ground, and substrate 
of PMOS transistors are connected to 5 Volts. The 
evolved length and width of the transistors are given as 
L/W in um. 
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Figure 5 – Divide and Conquer approach for the evolution of the Digital to Analog Converter. 
 



  

 
 

Figure 7 – Evolved Digital to Analog Converter. Inputs are labeled as I0, I1 and I2. Outputs are labeled as Out1 and Out2.  
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Figure 8 – Two outputs,  LSB and MSB, of the evolved circuit in full lines and in traces respectively (A) and combined 
output in full lines against target in traces (B). 
 
 It can be seen from Figure 8.B that the evolved circuit 
achieves a final response practically equal to the target for 
each of the eight states. Nevertheless, the circuit suffers 
from the glitch problem previously discussed. 
 

4.2 – Second Experiment 
 
The second experiment aimed to improve the evolvability 
of the circuit.  
 

A binary string was used to represent each individual, 
mapping two cascaded FPTA cells (Figure 3). Two binary 
inputs are applied to the circuit and a current is measured 
at the output.  
 
In order to facilitate the evolvability, we relaxed the 
requirement of having a specific DC operating point for 
each state of the converter. Instead, the fitness evaluation 
function rewarded circuits presenting uniform stepwise 
output. The following measure has been employed: 
 

Fitness = < ? Ii > - K .  MSE(? Ii , < ? Ii >)   (2) 

(A) 

(B) 

MSB 

LSB 



 
For each state transition i, we measure the gradient in the 
current output ? Ii. The average <? Ii > and Mean Squared 
Error to the average value, MSE(? Ii , < ? Ii >), are 
computed over the three state transitions. The constant K 
is a weighting factor determined by the user. This fitness 
measure seeks to maximize the current gradient between 
states, also keeping them uniform for all the transitions. 
The fact that the circuit is operating in current mode 
allows this degree of flexibility to be incorporated into the 

fitness function. Instead of specifying the particular 
values of the current at each state, only the shape of the 
output is evolved.  
 
The GA sampled only 30 individuals along 30 generations 
to find a circuit, since this is a very simple task for 
evolution. The evolved circuit is shown in Figure 9 and its 
response is depicted in Figure 10. 
 

 
 

 
Figure 9 – Two bit Digital to Analog Converter evolved in the second set of experiments. 
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Figure 10 – Response of the circuit shown in Figure 9. 
(Current in mA x Time in seconds). 
 

 
 
 
 
Besides being a quick and easy task for the GA, the 
evolution of current mode circuits facilitates the design 
scalability. For instance, we can easily construct a 4-bit 
DAC using the circuit of Figure 9 as a building block. As 
shown in Figure 11, all that is needed is a pair of current 
mirrors [1] with ratios of 1:1 and 1:4 respectively. Figure 
12 shows the response of the 4-bit DAC. 
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Figure 11 – 4 bit DAC based on evolved building block 
of Figure 9. 
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Figure 12 – Output of the circuit shown in Figure 11. 
 

4.3 – Third Experiment – Hierarchical Evolution 
 
The third experiment also targeted the synthesis of a 4-bit 
DAC. However, contrasting to the experiment shown 
above, evolution will also assemble the building blocks. 
In the circuit of Figure 11, human knowledge has been 
used to achieve a 4 bit DAC using current mirrors and the 
2-bit evolved DAC. This experiment allows evolution to 
manipulate the building blocks, without human 
intervention. The following building blocks are used: 
 

?? Current mirrors of different gains (1/8, 1/4, 1/2,  
1, 2, 4, 8); 

?? The evolved 2-bit DAC of Figure 9. 
 
This concept was first applied to evolve a 3-bit DAC. 
Figure 13 depicts the evolved circuit and Figure 14 its 
response. 

 
We proceeded one step further to achieve the 4-bit DAC. 
Evolution was now allowed to use the 3-bit DAC as a 
building block, together with the current mirrors. Figure 
15 depicts the evolved circuit. 
 
 

 
 

The fitness described by equation (2) was also used in this 
experiment. The graph of Figure 16 displays the fitness 
along the 800 generations comprised by this experiment. 
 

Figure 13 – Evolved 3-bit DAC without human 
intervention. In3 is the MSB. 
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Figure 14 – Output of the circuit shown in Figure 
13. 
 



We remark that, since evolution now manipulates high 
level building blocks, it is not necessary to use SPICE to 
simulate the circuits generated by the evolutionary 
process. The DC operating point of each building block 
has already been defined, and their behavior can be 
simulated using a high level description language, such as 
C. The main advantage of this procedure is the dramatic 
speed up in evolution time, taking less than one minute in 
a SPARC Ultra 2 Sun workstation. 
 

Figure 16 – Fitness behavior in the 4-bit DAC 
evolutionary experiment. 

 

 
Figure 17 shows the response of this circuit. One 
performance criteria for DACs is the Differential 
Nonlinearity  (DNL)[1]. This statistics can be defined as: 
 
DNLi = Incremental height of transition i – Ideal 
Increment Height    (3) 
 
In this particular case, there are 15 transitions, hence 15 
different DNL values. The ideal incremental height of 
each transition is the LSB (Least Significant Bit) of the 
data converter, which is around 1 mA in this case. The 
graph of Figure 18 plots the DNL as a percentage of the 
LSB for all the transitions. The worst case occurs at the 
8th transition, in which the DNL is around 0.5 (50% 
higher than the LSB). This transition is marked in the 
graph of Figure 17. 
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Figure 17 – Response of the circuit shown in Figure 15. 
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Figure 18 – DNL for the circuit shown in Figure 15. 
 
In order to reduce the DNL, a parametric optimization has 
been performed, by making slight changes in the 
transistors sizes of the current mirrors. The response of 
the new circuit is shown in Figure 19, and the DNL 
statistics is shown in Figure 20. It can be observed that the 
highest DNL is now only 0.11, compared to 0.5 in the 
previous version of the circuit.  
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Figure 15 – Evolved 4-bit DAC. In4 is the MSB, /In4 is the 
complemented version of the MSB and the output is Iout. 
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Figure 19 – Response of the optimized version of the 
circuit shown in Figure 15. 
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Figure 20 – DNL for the optimized version of the circuit 
shown in Figure 15. 
 
Another performance statistics for DACs is the settling 
time [14], which is the time between the switching of the 
digital inputs of the converter and the time when the 
output reaches its final value and remains within a 
specified error band. The settling time must be faster than 
the signal frequency in order to be able to reconstruct the 
waveform. In this evolved circuit, the worst settling time 
(0111? 1000 and 1111? 0000 transitions) was of 20ns; 
hence this DAC can be used in applications involving 
frequencies of up to 50 MHz. 
 
The main advantages of this approach are the scalability 
and the speed of evolution. Although we stopped at the 4-
bit DAC, we can scale up the process to include more bits 
into the circuit input.  
   
Up to some extent, this circuit still suffers from the glitch 
problem observed in the first experiment. There is a glitch 
in the transition 0111? 1000, too narrow that  it does not 
appear in the graphs. However, this glitch is much smaller 
than the ones observed in Figure 8.   
  
 

5. LESSONS LEARNED 

  
The automatic synthesis through evolutionary means of 
Digital to Analog converters has been demonstrated in 
this paper. Two different representations were employed 
for circuit evolution, the gene based and the FPTA 
representation. While the former allows a more flexible 
pattern of interconnections, circuits evolved using the 
FPTA model can be implemented in hardware using an 
existing reconfigurable chip. It has been observed that the 
FPTA model provided better results for current mode 
circuits, while the gene based representation produced 
better results for voltage mode DACs.  
 
A divide-and-conquer approach has been used to evolve a 
voltage mode DAC. Two circuit outputs were sampled, 
and later added in a post-processing stage. The steady 
state response of the circuit is very accurate comparing to 
the target, however the circuit suffers from glitch 
problem.  
 
It has also been verified that caution should be taken 
referring to the timescale of the inputs. The circuits 
should be tested in different timescales, to consider both 
transient effects and the steady state response. 
 
The last experiment consisted of the hierarchical 
evolution of a 4-bit DAC. In this particular case, the 
evolutionary system manipulated higher level building 
blocks, such as the evolved 2-bit DAC and current mirrors 
with different gains. The main advantages of hierarchical 
evolution are the speed and scalability. Since the building 
blocks can be described in a higher level description 
language, SPICE simulations are not necessary, and the 
evolution time drops to less than one minute. The design 
can be scaled up if we use circuits  evolved in previous 
steps as building blocks for the next evolutionary step, 
which encompasses the evolution of larger circuits.  The 
final 4-bit DAC obtained through this approach showed 
good statistics in terms of differential non-linearity and 
settling time. 
 
The main problem of the evolved circuits is the glitches 
observed in the state transitions. This same problem has 
also been reported in [13], where GP is applied to evolve 
a 3-bit DAC. In order to solve this problem, the authors of 
the referred paper tuned the fitness function to sample the 
so-called turn-defining points internally generated by 
SPICE. Those are the regions where the glitches may 
occur.  
 
Our approach to overcome this drawback is to use the GA 
to further optimize the transistors width and length of the 
evolved topologies. This approach has been successfully 
applied in this paper to improve the differential non-
linearity of the DAC circuit. In this new GA run, the 
topology is kept fixed, enabling the GA to focus solely on 
parametric optimization. Moreover, the fitness evaluation 



function will be designed in such a way to explicit 
penalize the glitches, by sampling the data points in the 
state transitions.  
 
Future experiments will include multi-objective 
optimization, in order to provide circuits with superior 
performance compared to the human designed ones. The 
idea here is to decompose the fitness evaluation to 
consider the following factors: 
 

?? Transient response with a small time step, 
minimizing glitches and settling time; 

?? Steady state response; 
?? Power dissipation; 
?? and intrinsic noise. 

 
There are many techniques proposed in the literature to 
carry out multi-objective optimization. The Energy 
Minimization technique [4] will be employed in these 
new experiments. The main goal is to achieve low-power 
and low-noise DACs of interest for aerospace systems. 
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